题目内容
【题目】如图,在矩形ABCD中,AB=3,点E为边CD上一点,将△ADE沿AE所在直线翻折,得到△AFE,点F恰好是BC的中点,M为AF上一动点,作MN⊥AD于N,则BM+AN的最小值为____.
【答案】.
【解析】
根据矩形的性质得到∠BAD=∠ABC=90°,BC=AD,由折叠的性质得到AF=AD,∠FAE=∠DAE,求得∠BAF=30°,∠DAF=60°,得到∠BAF=∠FAE,过B作BG⊥AF交AE于G,则点B与点G关于AF对称,过G作GH⊥AB于H交AF于M,则此时,BM+MH的值最小,推出△ABG是等边三角形,得到AG=BG=AB=5,根据勾股定理即可得到结论.
解:∵四边形ABCD是矩形,
∴∠BAD=∠ABC=90°,BC=AD.
∵将△ADE沿AE所在直线翻折,得到△AFE,
∴AF=AD,∠FAE=∠DAE.
∵点F恰好是BC的中点,
∴BF,
∴∠BAF=30°,
∴∠DAF=60°,
∴∠FAE,
∴∠BAF=∠FAE,
过B作BG⊥AF交AE于G,则点B与点G关于AF对称,
过G作GH⊥AB于H交AF于M,
则此时,BM+MH的值最小.
∵MN⊥AD,
∴四边形AHMN是矩形,
∴AN=HM,
∴BM+MH=BM+AN=HG.
∵AB=AG,∠BAG=60°,
∴△ABG是等边三角形,
∴AG=BG=AB=5,
∴,
∴HG,
∴BM+AN的最小值为.
故答案为:.
练习册系列答案
相关题目