题目内容
【题目】如图,点C在以AB为直径的上,点D是半圆AB的中点,连接AC,BC,AD,BD,过点D作交CB的延长线于点H.
(1)求证:直线DH是的切线;
(2)若,,求AD,BH的长.
【答案】(1)见解析;(2),
【解析】
(1)连接,先根据是的直径,D是半圆的中点,得出,再根据,得出,即可证明;
(2)连接,先证明是等腰直角三角形,求出AD的长,再根据AB,BC的长求出AC,根据四边形是圆内接四边形,推出,证明,得出,即可求出答案.
证明:(1)连接,
∵是的直径,D是半圆的中点,
∴,
∵,
∴,
∴,
∴是的切线;
(2)连接,
∵是的直径,
∴,
又D是半圆的中点,
∴,
∴,
∴是等腰直角三角形,
∵,
∴,
∵,
∴在中,
∵四边形是圆内接四边形,
∵,
∵,
∴,
由(1)知∠,
∴,
∵,
∴,
∴,
∴,
∴,即,
解得.
练习册系列答案
相关题目