题目内容
【题目】如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10,将△APB绕点B逆时针旋转一定角度后,可得到△CQB.
(1)求点P与点Q之间的距离;
(2)求∠APB的度数.
【答案】
(1)解:连接PQ,
由旋转性质有:
BQ=BP=8,QC=PA=6,∠QBC=∠ABP,∠BQC=∠BPA,
∴∠QBC+∠PBC=∠ABP+∠PBC
即∠QBP=∠ABC,
∵△ABC是正三角形,
∴∠ABC=60°,
∴∠QBP=60°,
∴△BPQ是正三角形,
∴PQ=BP=BQ=8
(2)解:在△PQC中,PQ=8,QC=6,PC=10
∴PQ2+QC2=PC2,
∴∠PQC=90°,
∴∠APB=∠BQC=∠BQP+∠PQC=60°+90°=150°
【解析】(1)由旋转的性质可以证明△PBQ是等边三角形,即可解决问题.(2)利用勾股定理的逆定理证明∠PQC=90°,由∠BQC=∠APB,即可解决问题.
【考点精析】掌握等边三角形的性质和勾股定理的逆定理是解答本题的根本,需要知道等边三角形的三个角都相等并且每个角都是60°;如果三角形的三边长a、b、c有下面关系:a2+b2=c2,那么这个三角形是直角三角形.
练习册系列答案
相关题目