题目内容
【题目】如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A、B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.
(1)求出点A的坐标和点D的横坐标;
(2)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a的值;
(3)设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,直接写出点P的坐标;若不能,请说明理由.
【答案】(1)A(﹣1,0),点D的横坐标为4;(2)a=﹣;(3)点P(1,﹣ )或(1,﹣4).
【解析】
(1)解方程即可得到结论;根据直线l:y=kx+b过A(﹣1,0),得到直线l:y=kx+k,
解方程得到点D的横坐标为4,求得k=a,得到直线l的函数表达式为y=ax+a;
(2)过E作EF∥y轴交直线l于F,设E(x,ax2﹣2ax﹣3a),得到F(x,ax+a),求出
EF=ax2﹣3ax﹣4a,根据三角形的面积公式列方程即可得到结论;
(3)令ax2﹣2ax﹣3a=ax+a,即ax2﹣3ax﹣4a=0,得到D(4,5a),设P(1,m),①若AD
是矩形ADPQ的一条边,②若AD是矩形APDQ的对角线,列方程即可得到结论.
解:(1)当y=0时,ax2﹣2ax﹣3a=0,
解得:x1=﹣1,x2=3,
∴A(﹣1,0),B(3,0),
∵直线l:y=kx+b过A(﹣1,0),
∴0=﹣k+b,
即k=b,
∴直线l:y=kx+k,
∵抛物线与直线l交于点A,D,
∴ax2﹣2ax﹣3a=kx+k,
即ax2﹣(2a+k)x﹣3a﹣k=0,
∵CD=4AC,
∴点D的横坐标为4;
(2)由(1)知,点D的横坐标为4,
∴k=a,
∴直线l的函数表达式为y=ax+a;
过E作EF∥y轴交直线l于F,设E(x,ax2﹣2ax﹣3a),
则F(x,ax+a),EF=ax2﹣2ax﹣3a﹣ax﹣a=ax2﹣3ax﹣4a,
∴S△ACE=S△AFE﹣S△CEF,
∴△ACE的面积的最大值=,
∵△ACE的面积的最大值为,
∴
解得
(3)以点A、D、P、Q为顶点的四边形能成为矩形,
令ax2﹣2ax﹣3a=ax+a,即ax2﹣3ax﹣4a=0,
解得:x1=﹣1,x2=4,
∴D(4,5a),
∵抛物线的对称轴为直线x=1,
设P(1,m),
①若AD是矩形ADPQ的一条边,
则易得Q(﹣4,21a),
m=21a+5a=26a,则P(1,26a),
∵四边形ADPQ是矩形,
∴∠ADP=90°,
∴AD2+PD2=AP2,
∴52+(5a)2+32+(26a﹣5a)2=22+(26a)2,
即
∵a<0,
∴
∴
②若AD是矩形APDQ的对角线,
则易得Q(2,﹣3a),
m=5a﹣(﹣3a)=8a,则P(1,8a),
∵四边形APDQ是矩形,
∴∠APD=90°,
∴AP2+PD2=AD2,
∴(﹣1﹣1)2+(8a)2+(1﹣4)2+(8a﹣5a)2=52+(5a)2,
即
∵a<0,
∴
∴P(1,﹣4),
综上所述,点A、D、P、Q为顶点的四边形能成为矩形,点或(1,﹣4).