题目内容
【题目】如图,四边形ABCD是平行四边形,AD=BD,过点C作CE∥BD,交AD的延长线于点E.
(1)求证:四边形BDEC是菱形;
(2)连接BE,若AB=2,AD=4,求BE的长.
【答案】(1)见解析 (2)
【解析】
(1)由平行四边形的性质可得AD∥BC,AD=BC=BD,由两组对边平行的四边形是平行四边形,可证四边形BDEC是平行四边形,即可得结论;
(2)连接BE交CD于O,由菱形的性质可得DO=CO=CD=1,BO=BE,CD⊥BE,由勾股定理可求BO的长,即可求解.
证明:(1)∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,AB=CD,
∵AD=BD,
∴BD=BC,
∵CE∥BD,AD∥BC,
∴四边形BDEC是平行四边形,
又∵BD=BC,
∴四边形BDEC是菱形;
(2)如图,连接BE交CD于O,
∵四边形BDEC是菱形,
∴DO=CO=CD=1,BO=BE,CD⊥BE,
在Rt△BDO中,AD=BD=4,DO=1,
∴BO=,
∴BE=2BO=.
练习册系列答案
相关题目