题目内容
阅读下面的材料:
小明遇到一个问题:如图(1),在□ABCD中,点E是边BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G. 如果,求的值.
他的做法是:过点E作EH∥AB交BG于点H,则可以得到△BAF∽△HEF.
请你回答:(1)AB和EH的数量关系为 ,CG和EH的数量关系为 ,的值为 .
(2)如图(2),在原题的其他条件不变的情况下,如果,那么的值为 (用含a的代数式表示).
(3)请你参考小明的方法继续探究:如图(3),在四边形ABCD中,DC∥AB,点E是BC延长线上一点,AE和BD相交于点F. 如果,那么的值为 (用含m,n的代数式表示).
(1),, ;(2);(3).
解析试题分析:本题的设计独具匠心:由平行四边形中的一个特殊的例子出发(第1问),推广到平行四边形中的一般情形(第2问),最后再通过类比、转化到梯形中去(第3问).各种图形虽然形式不一,但运用的解题思想与解题方法却是一以贯之:即通过构造相似三角形,得到线段之间的比例关系,这个比例关系均统一用同一条线段来表达,这样就可以方便地求出线段的比值.本题体现了初中数学的类比、转化、从特殊到一般等思想方法,有利于学生触类旁通、举一反三.(1)根据△BAF∽△HEF,可知两三角形的相似比是3:1,所以AB=3EH;由EH∥AB、CD∥AB可得EH∥CD,故△BCG∽△BEH,而E为BC的中点,所以两三角形的相似比为2:1,所以CG=2EH;由平行四边形对边相等得,AB=CD,所以.
根据(1)的分析,易得.(3)本问体现“类比”与“转化”的情形,将(1)(2)问中的解题方法推广转化到梯形中,如下图所示.
试题解析:
解:(1)依题意,过点E作EH∥AB交BG于点H,如右图1所示.则有△ABF∽△HEF,
∴,即AB=3EH
∵EH∥AB、CD∥AB可得EH∥CD,
∴△BCG∽△BEH,
又∵E为BC的中点,
∴CG=2EH;
∴
故填空依次为:,, .
同理根据(1)可以发现:,;
∴
故填空为 .
如上图所示,过点E作EH//AB交BD的延长线于点H,则有EH//AB//CD
∵EH//CD
∴△BCD∽△BEF,
∴,即
又∵
∴
∵EH//AB
∴△ABF∽△EHF
∴
故填空为:.
考点:1、相似形综合题;2、平行四边形的性质;3、梯形;4、相似三角形的判定与性质.