题目内容
如图,点B在线段AC上,点D,E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.
(1)求证:AC=AD+CE;
(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE于点Q;
(i)当点P与A,B两点不重合时,求的值;
(ii)当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)
解:(1)证明:如图,∵BD⊥BE,∴∠1+∠2=180°﹣90°=90°。
∵∠C=90°,∴∠2+∠E=180°﹣90°=90°。∴∠1=∠E。
∵在△ABD和△CEB中,∠1=∠E,∠A=∠C=90°,AD=BC,
∴△ABD≌△CEB(AAS)。∴AB=CE。
∴AC=AB+BC=AD+CE。
(2)(i)如图,连接DQ,
∵∠DPQ=∠DBQ="90°,"
∴D、P、B、Q四点在以DQ为直径的圆上。
∴∠DQP=∠DBP。
∴Rt△DPQ∽Rt△DAB。∴。
∵DA=3,AB=EC=5,∴。
(ii)线段DQ的中点所经过的路径(线段)长为。
解析
练习册系列答案
相关题目
一个几何体的三视图如图所示,则这个几何体是( )
A.三棱锥 | B.三棱柱 | C.四棱锥 | D.四棱柱 |