题目内容

如图,OA=4,线段OA的中点为B,点P在以O为圆心,OB为半径的圆上运动,PA的中点为Q.当点Q也落在⊙O上时,cos∠OQB的值等于(  )
A.
1
2
B.
1
3
C.
1
4
D.
2
3

当点P运动到恰好点Q落在⊙O上,连接QB,OP,BC,再连接QO并延长交⊙O于点C,则∠CBQ=90°(直径所对的圆周角是直角)
∵B、Q分别是OA、AP的中点,
∴BQOP,
∵OP=OB=BA=
1
2
OA=2,
∴QB=1
在Rt△CQB中,∠CBQ=90°
∴cos∠OQB=
QB
QC
=
1
4

故选C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网