题目内容
【题目】问题探究:在边长为4的正方形ABCD中,对角线AC、BD交于点O.
探究1:如图1,若点P是对角线BD上任意一点,求线段AP的长的取值范围;
探究2:如图2,若点P是△ABC内任意一点,点M、N分别是AB边和对角线AC上的两个动点,则当AP的值在探究1中的取值范围内变化时,△PMN的周长是否存在最小值?如果存在,请求出△PMN周长的最小值,若不存在,请说明理由;
问题解决:如图3,在边长为4的正方形ABCD中,点P是△ABC内任意一点,且AP=4,点M、N分别是AB边和对角线AC上的两个动点,则当△PMN的周长取到最小值时,直接求四边形AMPN面积的最大值。
【答案】(1)2≤PA≤4;(2)存在,2;(3)16–8.
【解析】
(1)当P与O重合时,PA的值最小,最小值为,当P与B或D重合时,PA的值最大,最大值为4,即可得线段AP的长的取值范围;
(2)存在,如图2中,作点P关于AB、AC的对称点E、F,连接EF交AB于M,交AC于N,连接AE、AF、PA,由PM+MN+PN=EM+MN+NF=EF,推出点P位置确定时,此时△PMN的周长最小,最小值为线段EF的长,由∠PAM=∠EAM,∠PAN=∠FAN,∠BAC=45°,推出∠EAF=2∠BAC=90°,由PA=PE=PF,推出△EAF是等腰直角三角形,由PA的最小值为,可得线段EF的最小值为2,由此即可解决问题,(3)如图3中,在图2的基础上,以A为圆心AB为半径作⊙A,PA交EF于点O,由△MAP≌△MAE,△NAP≌△NAF,推出S四边形AMPN=S△AEM+S△ANF=S△AEF-S△AMN,由此可以知道△AMN的面积最小时,四边形AMPN面积最大.
(1)如图1中,
∵四边形ABCD是正方形,边长为4,
∴AC⊥BD,AC=BD=4,
∴当P与O重合时,PA的值最小最小值=2,
当P与B或D重合时,PA的值最大,最大值为4,
∴2≤PA≤4.
(2)存在.
理由:如图2中,作点P关于AB、AC的对称点E、F,连接EF交AB于M,交AC于N,连接AE、AF、PA.
∵PM+MN+PN=EM+MN+NF=EF,
∴点P位置确定时,此时△PMN的周长最小,最小值为线段EF的长,
∵∠PAM=∠EAM,∠PAN=∠FAN,∠BAC=45°,
∴∠EAF=2∠BAC=90°,
∵PA=PE=PF,∴△EAF是等腰直角三角形,
∵PA的最小值为,∴线段EF的最小值为2,
∴△PMN的周长的最小值为2.
(3)8–(8–8)=16–8
【题目】某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.
收集数据
从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:
甲 78 86 74 81 75 76 87 70 75 90
75 79 81 70 74 80 86 69 83 77
乙 93 73 88 81 72 81 94 83 77 83
80 81 70 81 73 78 82 80 70 40
整理、描述数据
按如下分数段整理、描述这两组样本数据:
成绩 人数 部门 | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
甲 | 0 | 0 | 1 | 11 | 7 | 1 |
乙 |
(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格)
分析数据
两组样本数据的平均数、中位数、众数如下表所示:
部门 | 平均数 | 中位数 | 众数 |
甲 | 78.3 | 77.5 | 75 |
乙 | 78 | 80.5 | 81 |
得出结论:
.估计乙部门生产技能优秀的员工人数为____________;
.可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)