题目内容
【题目】探索题:
(x-1)(x+1)=x-1
(x-1)(x+x+1)=x-1
(x-1)(x+x+x+1)=x-1
(x-1)(x+ x+x+x+1)=x-1
(1)观察以上各式并猜想:
①(x-1)(x+x+x+ x+x+x+1)= ;
②(x-1)(x+x+x+… x+x+x+1)= ;
(2)请利用上面的结论计算:
①(-2)+(-2)+(-2)+…+(-2)+1
②若 x+x+…+x+x+x+1=0,求 x的值.
【答案】(1)①x7-1,②xn+1-1;(2)①,②1.
【解析】
(1)①②根据已知式子进行探寻规律即可;
(2)①将原始乘以(-2-1)后除以(-2-1),再运用公式计算即可;
②将原始乘以(x-1)后除以(x-1),再运用公式计算即可.
(1)①(x-1)(x6+x5+x4+x3+x2+x+1)=x7-1,
②(x-1)(xn+xn-1+xn-2+…+x3+x2+x+1)=xn+1-1,
故答案为x7-1,xn+1-1;
(2)①(-2)50+(-2)49+(-2)48+…+(-2)+1=
=(-2-1)×[(-2)50+(-2)49+(-2)48+…+(-2)+1]÷(-2-1)
=[(-2)51-1]÷(-3)
=(-251-1)÷(-3)
= ,
②x1007+x1006+…+x3+x2+x+1
=(x-1)(x1007+x1006+…+x3+x2+x+1)÷(x-1)
=(x1008-1)÷(x-1),
∴x1008-1=0,
x1008=1,
∴x3024=(x1008)3=1.
练习册系列答案
相关题目