题目内容
【题目】如图,菱形ABCD中,AB=2,∠A=120°,点E、F分别在边AB、AD上且AE=DF,则△AEF面积的最大值为_____.
【答案】
【解析】
过点E作EM⊥AD交DA的延长线于点M,设AE=x,则AE=DF=x,根据菱形的性质表示AF,在△AME中通过锐角三角函数表示EM,根据三角形面积公式表示△AEF的面积,再利用二次函数的顶点式求出面积的最大值.
解:过点E作EM⊥AD交DA的延长线于点M,设AE=x,则AE=DF=x,
∵四边形ABCD是菱形,∠A=120°,
∴AB=AD=2,∠MAE=60°,
∴AF=2﹣x,
∴EM=AEsin60°=x,
∴S△AEF=AFEM=(2﹣x)×x=﹣(x﹣1)2+,
∴△AEF面积的最大值为 ,
故答案为:.
【题目】如图,是直径AB所对的半圆弧,点C在上,且∠CAB =30°,D为AB边上的动点(点D与点B不重合),连接CD,过点D作DE⊥CD交直线AC于点E.
小明根据学习函数的经验,对线段AE,AD长度之间的关系进行了探究.
下面是小明的探究过程,请补充完整:
(1)对于点D在AB上的不同位置,画图、测量,得到线段AE,AD长度的几组值,如下表:
位置1 | 位置2 | 位置3 | 位置4 | 位置5 | 位置6 | 位置7 | 位置8 | 位置9 | ||
AE/cm | 0.00 | 0.41 | 0.77 | 1.00 | 1.15 | 1.00 | 0.00 | 1.00 | 4.04 | … |
AD/cm | 0.00 | 0.50 | 1.00 | 1.41 | 2.00 | 2.45 | td style="width:10%; border-top-style:solid; border-top-width:0.75pt; border-right-style:solid; border-right-width:0.75pt; border-left-style:solid; border-left-width:0.75pt; padding:3.38pt 5.03pt; vertical-align:middle">3.21 | 3.50 | … |
在AE,AD的长度这两个量中,确定_______的长度是自变量,________的长度是这个自变量的函数;
(2)在下面的平面直角坐标系中,画出(1)中所确定的函数的图象;
(3)结合画出的函数图象,解决问题:当AE=AD时,AD的长度约为________cm(结果精确到0.1).