题目内容

如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,可得AD平分∠BAC.

理由如下:∵AD⊥BC于D,EG⊥BC于G,( 已知 )
∴∠ADC=∠EGC=90°,(                        )
∴AD∥EG,(                                )
∴∠1=∠2,(                              )
      =∠3,(                             )
又∵∠E=∠1,(        )
∴∠2=∠3 (                              )       
∴AD平分∠BAC.(                                       )
垂直的定义;同位角相等,两直线平行;两直线平行,内错角相等;两直线平行,同位角相等;已知;等量代换;角平分线定义

试题分析:根据垂直的定义、平行线的判定和性质、角平分线的性质依次分析即可.
∵AD⊥BC于D,EG⊥BC于G,(已知)
∴∠ADC=∠EGC=90°,( 垂直的定义 
∴AD∥EG,( 同位角相等,两直线平行 
∴∠1=∠2,( 两直线平行,内错角相等 
E=∠3,( 两直线平行,同位角相等 
又∵∠E=∠1( 已知 
∴∠2=∠3( 等量代换 
∴AD平分∠BAC( 角平分线定义 ).
点评:平行线的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网