题目内容
【题目】如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.
(1)求作∠ABC的平分线,分别交AD,AC于E,F两点;(要求:尺规作图,保留作图痕迹,不写作法)
(2)证明:AE=AF.
【答案】(1)见解析;(2)证明见解析.
【解析】
(1)利用基本作图(作已知角的角平分线)作BF平分∠ABC即可;
(2)分析题意,首先根据角平分线的作法作出∠ABC的角平分线,并标注点E、F即可;根据直角三角形的性质,可得出∠BED+∠EBD=90°,∠AFE+∠ABF=90°,进而得出∠BED=∠AFE; 接下来根据对顶角相等,可得出∠AEF=∠AFE,据此可得到结论.
解:(1)如图所示,射线BF即为所求
(2)证明:∵AD⊥BC
∴∠ADB=90°
∴∠BED+∠EBD=90°
∵∠BAC=90°
∴∠AFE+∠ABF=90°
∵∠EBD=∠ABF
∴∠AFE=∠BED,
∵∠AEF=∠BED
∴∠AEF=∠AFE
∴AE=AF
练习册系列答案
相关题目
【题目】为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是( )
捐款数额 | 10 | 20 | 30 | 50 | 100 |
人数 | 2 | 4 | 5 | 3 | 1 |
A. 众数是100 B. 中位数是30 C. 极差是20 D. 平均数是30
【题目】某班对道德与法治,历史,地理三门程的选考情况进行调研,数据如下:
科目 | 道德与法治 | 历史 | 地理 |
选考人数(人) | 19 | 13 | 18 |
其中道德与法治,历史两门课程都选了的有3人,历史,地理两门课程都选了的有4人,该班至多有多少学生( )
A.41B.42C.43D.44