ÌâÄ¿ÄÚÈÝ
ѧϰ¹ýÈý½Çº¯Êý£¬ÎÒÃÇÖªµÀÔÚÖ±½ÇÈý½ÇÐÎÖУ¬Ò»¸öÈñ½ÇµÄ´óСÓëÁ½Ìõ±ß³¤µÄ±ÈÖµÏ໥Ψһȷ¶¨£¬Òò´Ë±ß³¤Óë½ÇµÄ´óС֮¼ä¿ÉÒÔÏ໥ת»¯£®
ÀàËƵģ¬¿ÉÒÔÔÚµÈÑüÈý½ÇÐÎÖн¨Á¢±ß½ÇÖ®¼äµÄÁªÏµ£¬ÎÒÃǶ¨Ò壺µÈÑüÈý½ÇÐÎÖеױßÓëÑüµÄ±È½Ð×ö¶¥½ÇµÄÕý¶Ô£¨sad£©£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬AB=AC£¬¶¥½ÇAµÄÕý¶Ô¼Ç×÷sadA£¬Õâʱsad A=
=
£®ÈÝÒ×ÖªµÀÒ»¸ö½ÇµÄ´óСÓëÕâ¸ö½ÇµÄÕý¶ÔÖµÒ²ÊÇÏ໥Ψһȷ¶¨µÄ£®
¸ù¾ÝÉÏÊö¶Ô½ÇµÄÕý¶Ô¶¨Ò壬½âÏÂÁÐÎÊÌ⣺
£¨1£©sad60¡ãµÄֵΪ£¨¡¡¡¡£©A£®
B£®1 C£®
D£®2
£¨2£©¶ÔÓÚ0¡ã£¼A£¼180¡ã£¬¡ÏAµÄÕý¶ÔÖµsadAµÄÈ¡Öµ·¶Î§ÊÇ______£®
£¨3£©ÒÑÖªsin¦Á=
£¬ÆäÖЦÁΪÈñ½Ç£¬ÊÔÇósad¦ÁµÄÖµ£®
ÀàËƵģ¬¿ÉÒÔÔÚµÈÑüÈý½ÇÐÎÖн¨Á¢±ß½ÇÖ®¼äµÄÁªÏµ£¬ÎÒÃǶ¨Ò壺µÈÑüÈý½ÇÐÎÖеױßÓëÑüµÄ±È½Ð×ö¶¥½ÇµÄÕý¶Ô£¨sad£©£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬AB=AC£¬¶¥½ÇAµÄÕý¶Ô¼Ç×÷sadA£¬Õâʱsad A=
µ×±ß |
Ñü |
BC |
AB |
¸ù¾ÝÉÏÊö¶Ô½ÇµÄÕý¶Ô¶¨Ò壬½âÏÂÁÐÎÊÌ⣺
£¨1£©sad60¡ãµÄֵΪ£¨¡¡¡¡£©A£®
1 |
2 |
| ||
2 |
£¨2£©¶ÔÓÚ0¡ã£¼A£¼180¡ã£¬¡ÏAµÄÕý¶ÔÖµsadAµÄÈ¡Öµ·¶Î§ÊÇ______£®
£¨3£©ÒÑÖªsin¦Á=
3 |
5 |
£¨1£©¸ù¾ÝÕý¶Ô¶¨Ò壬
µ±¶¥½ÇΪ60¡ãʱ£¬µÈÑüÈý½ÇÐε׽ÇΪ60¡ã£¬
ÔòÈý½ÇÐÎΪµÈ±ßÈý½ÇÐΣ¬
Ôòsad60¡ã=
=1£®
¹ÊÑ¡B£®
£¨2£©µ±¡ÏA½Ó½ü0¡ãʱ£¬sad¦Á½Ó½ü0£¬
µ±¡ÏA½Ó½ü180¡ãʱ£¬µÈÑüÈý½ÇÐεĵ׽ӽüÓÚÑüµÄ¶þ±¶£¬¹Êsad¦Á½Ó½ü2£®
ÓÚÊÇsadAµÄÈ¡Öµ·¶Î§ÊÇ0£¼sadA£¼2£®
¹Ê´ð°¸Îª0£¼sadA£¼2£®
£¨3£©Èçͼ£¬ÔÚ¡÷ABCÖУ¬¡ÏACB=90¡ã£¬sin¡ÏA=
£®
ÔÚABÉÏÈ¡µãD£¬Ê¹AD=AC£¬
×÷DH¡ÍAC£¬HΪ´¹×㣬ÁîBC=3k£¬AB=5k£¬
ÔòAD=AC=
=4k£¬
ÓÖ¡ßÔÚ¡÷ADHÖУ¬¡ÏAHD=90¡ã£¬sin¡ÏA=
£®
¡àDH=ADsin¡ÏA=
k£¬AH=
=
k£®
ÔòÔÚ¡÷CDHÖУ¬CH=AC-AH=
k£¬CD=
=
k£®
ÓÚÊÇÔÚ¡÷ACDÖУ¬AD=AC=4k£¬CD=
k£®
ÓÉÕý¶ÔµÄ¶¨Òå¿ÉµÃ£ºsadA=
=
£¬¼´sad¦Á=
£®
µ±¶¥½ÇΪ60¡ãʱ£¬µÈÑüÈý½ÇÐε׽ÇΪ60¡ã£¬
ÔòÈý½ÇÐÎΪµÈ±ßÈý½ÇÐΣ¬
Ôòsad60¡ã=
1 |
1 |
¹ÊÑ¡B£®
£¨2£©µ±¡ÏA½Ó½ü0¡ãʱ£¬sad¦Á½Ó½ü0£¬
µ±¡ÏA½Ó½ü180¡ãʱ£¬µÈÑüÈý½ÇÐεĵ׽ӽüÓÚÑüµÄ¶þ±¶£¬¹Êsad¦Á½Ó½ü2£®
ÓÚÊÇsadAµÄÈ¡Öµ·¶Î§ÊÇ0£¼sadA£¼2£®
¹Ê´ð°¸Îª0£¼sadA£¼2£®
£¨3£©Èçͼ£¬ÔÚ¡÷ABCÖУ¬¡ÏACB=90¡ã£¬sin¡ÏA=
3 |
5 |
ÔÚABÉÏÈ¡µãD£¬Ê¹AD=AC£¬
×÷DH¡ÍAC£¬HΪ´¹×㣬ÁîBC=3k£¬AB=5k£¬
ÔòAD=AC=
(5k)2-(3k)2 |
ÓÖ¡ßÔÚ¡÷ADHÖУ¬¡ÏAHD=90¡ã£¬sin¡ÏA=
3 |
5 |
¡àDH=ADsin¡ÏA=
12 |
5 |
AD2-DH2 |
16 |
5 |
ÔòÔÚ¡÷CDHÖУ¬CH=AC-AH=
4 |
5 |
DH2+CH2 |
4
| ||
5 |
ÓÚÊÇÔÚ¡÷ACDÖУ¬AD=AC=4k£¬CD=
4
| ||
5 |
ÓÉÕý¶ÔµÄ¶¨Òå¿ÉµÃ£ºsadA=
CD |
AD |
| ||
5 |
| ||
5 |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿