题目内容
【题目】如图已知函数y=(k>0,x>0)的图象与一次函数y=mx+5(m<0)的图象相交不同的点A、B,过点A作AD⊥x轴于点D,连接AO,其中点A的横坐标为x0,△AOD的面积为2.
(1)求k的值及x0=4时m的值;
(2)记[x]表示为不超过x的最大整数,例如:[1.4]=1,[2]=2,设t=ODDC,若﹣<m<﹣,求[m2t]值.
【答案】(1)k= 4;m=﹣1;(2)[m2t]=5.
【解析】
(1)设A(x0,y0),可表示出△AOD的面积,再结合k=x0y0可求出k的值,根据A的横坐标可得纵坐标,代入一次函数可得m的值.
(2)先根据一次函数与x轴的交点确定OC的长,表示出DC的长,从而可以表示t,根据A的横坐标x0,即x0满足,可得,再根据m的取值计算m2·t,最后利用新定义可得所求值.
(1)设A(x0,y0),则OD=x0,AD=y0,
∴S△AOD=ODAD==2,
∴k=x0y0=4;
当x0=4时,y0=1,
∴A(4,1),
代入y=mx+5中得4m+5=1,m=﹣1;
(2)∵,
,
mx2+5x﹣4=0,
∵A的横坐标为x0,
∴mx02+5x0=4,
当y=0时,mx+5=0,
x=﹣,
∵OC=﹣,OD=x0,
∴m2t=m2(ODDC),
=m2x0(﹣﹣x0),
=m(﹣5x0﹣mx02),
=﹣4m,
∵﹣<m<﹣,
∴5<﹣4m<6,
∴[m2t]=5.
【题目】小明根据学习函数的经验,对函数y=x+的图象与性质进行了探究.
下面是小明的探究过程,请补充完整:
(1)函数y=x+的自变量x的取值范围是_____.
(2)下表列出了y与x的几组对应值,请写出m,n的值:m=_____,n=_____;
x | … | ﹣3 | ﹣2 | ﹣1 | ﹣ | ﹣ | 1 | 2 | 3 | 4 | … | ||
y | … | ﹣ | ﹣ | ﹣2 | ﹣ | ﹣ | m | 2 | n | … |
(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;
(4)结合函数的图象,请完成:
①当y=﹣时,x=_____.
②写出该函数的一条性质_____.
③若方程x+=t有两个不相等的实数根,则t的取值范围是_____.