题目内容
【题目】已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,……以此类推,则a2018的值为( )
A. ﹣1007 B. ﹣1008 C. ﹣1009 D. ﹣2018
【答案】C
【解析】
根据前几个数字比较后发现:从第二个数字开始,如果顺序数为偶数,最后的数值是其顺序数的一半的相反数,即a2n=﹣n,则a2018=﹣=﹣1009,从而得到答案.
解:a1=0,
a2=﹣|a1+1|=﹣|0+1|=﹣1,
a3=﹣|a2+2|=﹣|﹣1+2|=﹣1,
a4=﹣|a3+3|=﹣|﹣1+3|=﹣2,
a5=﹣|a4+4|=﹣|﹣2+4|=﹣2,
a6=﹣|a5+5|=﹣|﹣2+5|=﹣3,
a7=﹣|a6+6|=﹣|﹣3+6|=﹣3,
…
以此类推,
经过前几个数字比较后发现:
从第二个数字开始,如果顺序数为偶数,最后的数值是其顺序数的一半的相反数,
即a2n=﹣n,
则a2018=﹣=﹣1009,
故选:C.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目