题目内容
【题目】如图,矩形ABCD中,AB=8,BC=6,点E,F,G,H分别在矩形ABCD各边上,且AE=CG,BF=DH,则四边形EFGH周长的最小值为( )
A. 10B. 4C. 20D. 8
【答案】C
【解析】
作点E关于BC的对称点E′,连接E′G交BC于点F,此时四边形EFGH周长取最小值,过点G作GG′⊥AB于点G′,由对称结合矩形的性质可知:E′G′=AB,GG′=AD,利用勾股定理即可求出E′G的长度,进而可得出四边形EFGH周长的最小值.
解:作点E关于BC的对称点E′,连接E′G交BC于点F,此时四边形EFGH周长取最小值,EF=E'F,
过点G作GG′⊥AB于点G′,如图所示.
∵AE=CG,BE=BE′,
∴E′G′=AB=8,
∵GG′=AD=6,
∴E′G==10,
∴C四边形EFGH=2(GF+EF)=2E′G=20.
故选:C.
练习册系列答案
相关题目