题目内容
【题目】如图,E是正方形ABCD的边AB上的动点,但始终保持EF⊥DE交BC于点F.
(1)求证:△ADE∽△BEF;
(2)若正方形的边长为4,设AE=x,BF=y,求y与x之间的函数解析式;
(3)当x取何值时,y有最大值?并求出这个最大值.
【答案】(1)证明见解析;(2) ;(3)当时, 取得最大值, .
【解析】试题分析:(1)根据正方形的性质及余角的性质得出△ADE与△BEF的两对应角相等,从而得出△ADE∽△BEF;
(2)根据相似三角形的性质得出y关于x的函数解析式及函数的定义域;
(3)利用配方法,即可解决问题;
试题解析:
(1)∵ 四边形ABCD是正方形,
∴ ∠A=∠B=90°,∴ ∠1+∠2=90°,
又∵,∴ ∠2+∠3=90°,∴ ∠1=∠3 ,
∴ ∽;
(2)依题意知:AB=AD=4,
∵,∴ BE= ,
由(1)知∽, ∴ ,
即 ,
∴ ,
即 ;
(3)∵ ,
∴ 当时, 取得最大值, .
练习册系列答案
相关题目