题目内容
【题目】数和形是数学的两个主要研究对象,我们经常运用数形结合、数形转化的方法解决一些数学问题。下面我们来探究“由数思形,以形助数”的方法在解决代数问题中的应用.
探究一:求不等式的解集
(1)探究的几何意义
如图①,在以O为原点的数轴上,设点A'对应点的数为,由绝对值的定义可知,点A'与O的距离为,
可记为:A'O=。将线段A'O向右平移一个单位,得到线段AB,,此时点A对应的数为,点B的对应数是1,
因为AB= A'O,所以AB=。
因此,的几何意义可以理解为数轴上所对应的点A与1所对应的点B之间的距离AB。
(2)求方程=2的解
因为数轴上3与所对应的点与1所对应的点之间的距离都为2,所以方程的解为
(3)求不等式的解集
因为表示数轴上所对应的点与1所对应的点之间的距离,所以求不等式解集就转化为求这个距离小于2的点所对应的数的范围。
请在图②的数轴上表示的解集,并写出这个解集
探究二:探究的几何意义
(1)探究的几何意义
如图③,在直角坐标系中,设点M的坐标为,过M作MP⊥x轴于P,作MQ⊥y轴于Q,则点P点坐标(),Q点坐标(),|OP|=,|OQ|=,
在Rt△OPM中,PM=OQ=y,则
因此的几何意义可以理解为点M与原点O(0,0)之间的距离OM
(2)探究的几何意义
如图④,在直角坐标系中,设点 A'的坐标为,由探究(二)(1)可知,
A'O=,将线段 A'O先向右平移1个单位,再向上平移5个单位,得到线段AB,此时A的坐标为(),点B的坐标为(1,5)。
因为AB= A'O,所以 AB=,因此的几何意义可以理解为点A()与点B(1,5)之间的距离。
(3)探究的几何意义
请仿照探究二(2)的方法,在图⑤中画出图形,并写出探究过程。
(4)的几何意义可以理解为:_________________________.
拓展应用:
(1)+的几何意义可以理解为:点A与点E的距离与点AA与点F____________(填写坐标)的距离之和。
(2)+的最小值为____________(直接写出结果)
【答案】探究一(3) 解集为:
探究二(3)()拓展应用(1)() (2)5
【解析】
试题分析:探究一(3):的解集就是数轴上所对应的点与1所对应的点之间的距离小于2的点所对应的数,利用数轴可知
探究二(3):根据题目信息,的几何意义可以理解为点A()与点B()之间的距离。
拓展应用:根据题目信息知是与点F()的距离之和。
+表示点A与点E的距离与点A与点F()的距离之和。∴最小值为E与点F()的距离5.
试题解析:探究一
(3)
解集为:
探究二(3)
如图⑤,在直角坐标系中,设点 A'的坐标为,
由探究(二)(1)可知, A'O=,
将线段 A'O先向左平移3个单位,再向下平移4个单位,
得到线段AB,此时A的坐标为(),点B的坐标为()。
因为AB= A'O,所以 AB=,
因此的几何意义可以理解为点A()与点B()之间的距离。
拓展应用
(1)() (2)5