题目内容

【题目】二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=﹣1,与x轴的一个交点为(1,0),与y轴的交点为(0,3),则方程ax2+bx+c=0(a≠0)的解为(

A.x=1
B.x=﹣1
C.x1=1,x2=﹣3
D.x1=1,x2=﹣4

【答案】C
【解析】解:∵抛物线的对称轴为直线x=﹣1,与x轴的一个交点为(1,0),
∴抛物线与x轴另一个交点坐标为(﹣3,0).
∴ax2+bx+c=0(a≠0)的解为x1=1,x2=﹣3.
故选:C.
【考点精析】解答此题的关键在于理解抛物线与坐标轴的交点的相关知识,掌握一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网