题目内容
【题目】如图,在正方形中,点是对角线上一点,且,过点作交于点,连接.
(1)求证:;
(2)当时,求的值.
【答案】(1)详见解析;(2)4+4
【解析】
(1)连接CF,利用HL证明Rt△CDF≌Rt△CEF,可得DF=EF,再根据等腰直角三角形可得EF=AF,所以得出DF=AE.
(2) 过点E作EH⊥AB于H,利用勾股定理求出AC,再求出AE,根据特殊直角三角形的边长比求出EH和AH,可得BH,再利用勾股定理求出BE2即可.
(1)连接CF,
∵∠D=∠CEF=90°,CD=CE,CF=CF,
∴Rt△CDF≌Rt△CEF(HL),
∴DF=EF,
∵AC为正方形ABCD的对角线,
∴∠CAD=45°,
∴△AEF为等腰直角三角形,
∴EF=AF,
∴DF=AE.
(2) ∵AB=2+,
∴由勾股定理得AC=2+2,
∵CE=CD,
∴AE=.
过点E作EH⊥AB于H,则△AEH是等腰直角三角形.
∴EH=AH=AE=×=1.
∴BH=2+-1=1+.
在Rt△BEH中,BE2=BH2+EH2=(1+)2+12=4+4.
练习册系列答案
相关题目