题目内容
【题目】某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B出发,沿轨道到达C处,在AC上,甲的速度是乙的速度的1.5倍,设t分后甲、乙两遥控车与B处的距离分别为d1,d2(单位:米),则d1,d2与t的函数关系如图,试根据图象解决下列问题.
(1)填空:乙的速度v2=________米/分;
(2)写出d1与t的函数表达式;
(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探究什么时间两遥控车的信号不会产生相互干扰?
【答案】(1)40;(2)当0≤t≤1时,d1=﹣60t+60;当1<t≤3时,d1=60t﹣60;(3)当0≤t<2.5时,两遥控车的信号不会产生相互干扰.
【解析】
试题(1)根据路程与时间的关系,可得答案;
(2)根据甲的速度是乙的速度的1.5倍,可得甲的速度,根据路程与时间的关系,可得a的值,根据待定系数法,可得答案;
(3)根据两车的距离,可得不等式,根据解不等式,可得答案.
试题解析:(1)乙的速度v2=120÷3=40(米/分),
(2)v1=1.5v2=1.5×40=60(米/分),
60÷60=1(分钟),a=1,
d1=;
(3)d2=40t,
当0≤t<1时,d2-d1>10,
即-60t+60+40t>10,
解得0≤t<2.5,
∵0≤t<1,
∴当0≤t<1时,两遥控车的信号不会产生相互干扰;
当1≤t≤3时,d2-d1>10,
即40t-(60t-60)>10,
当1≤t<时,两遥控车的信号不会产生相互干扰
综上所述:当0≤t<2.5时,两遥控车的信号不会产生相互干扰.
【题目】某校在“626国际禁毒日”前组织七年级全体学生320人进行了一次“毒品预防知识”竞赛,赛后随机抽取了部分学生成绩进行统计,制作如表频数分布表和频数分布直方图,请根据图表提供的信息,解答下列问题:
少分数段(x表示分数) | 频数 | 频率 |
50≤x<60 | 4 | 0.1 |
60≤x<70 | a | 0.2 |
70≤x<80 | 12 | b |
80≤x<90 | 10 | 0.25 |
90≤x<100 | 6 | 0.15 |
(1)表中a= , b= , 并补全直方图
(2)若用扇形统计图描述此成绩分布情况,则分数段80≤x<100对应扇形的圆心角度数是;
(3)请估计该年级分数在60≤x<100的学生有多少人?