题目内容
【题目】阅读以下材料,并按要求完成相应地任务:
莱昂哈德·欧拉(Leonhard Euler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面是欧拉发现的一个定理:在△ABC中,R和r分别为外接圆和内切圆的半径,O和I分别为其外心和内心,则.下面是该定理的证明过程(部分):
延长AI交⊙O于点D,过点I作⊙O的直径MN,连接DM,AN.
∵∠D=∠N,∴∠DMI=∠NAI(同弧所对的圆周角相等),
∴△MDI∽△ANI.∴,∴①
如图2,在图1(隐去MD,AN)的基础上作⊙O的直径DE,连接BE,BD,BI,IF
∵DE是⊙O的直径,∴∠DBE=90°.
∵⊙I与AB相切于点F,∴∠AFI=90°,
∴∠DBE=∠IFA.
∵∠BAD=∠E(同弧所对圆周角相等),
∴△AIF∽△EDB.
∴,∴②
任务:(1)观察发现:, (用含R,d的代数式表示);
(2)请判断BD和ID的数量关系,并说明理由.
(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;
(4)应用:若△ABC的外接圆的半径为5cm,内切圆的半径为2cm,则△ABC的外心与内心之间的距离为 cm.
【答案】((1)R-d;(2)BD=ID,理由见解析;(3)见解析;(4)cm
【解析】
(1)直接观察可得;
(2)BD=ID,只要证明∠BID=∠DBI,由三角形内心性质和圆周角性质即可得证;
(3)应用(1)(2)结论即可;
(4)直接代入计算.
(1)∵O、I、N三点共线,
∴OI+IN=ON
∴IN=ON-OI=R-d
故答案为:R-d;
(2)BD=ID
理由如下:
如图3,过点I作⊙O直径MN,连接AI并延长交⊙O于D,连接MD,BI,BD,
∵点I是△ABC的内心
∴∠BAD=∠CAD,∠CBI=∠ABI
∵∠DBC=∠CAD,∠BID=∠BAD+∠ABI,∠DBI=∠DBC+∠CBI
∴∠BID=∠DBI
∴BD=ID
(3)由(2)知:BD=ID
∴IAID=DEIF
∵DEIF=IMIN
∴2Rr=(R+d)(R-d)
∴R2-d2=2Rr
∴d2=R2-2Rr
(4)由(3)知:d2=R2-2Rr;将R=5,r=2代入得:
d2=52-2×5×2=5,
∵d>0
∴d= .
故答案为:.