题目内容
【题目】如图1,某同学家的一面窗户上安装有遮阳篷,图2和图3是截面示意图,CD是遮阳篷,窗户AB为1.5米,BC为0.5米.该遮阳篷有伸缩功能.如图2,该同学在夏季某日的正午时刻测得太阳光和水平线的夹角为60°,遮阳篷CD正好将进入窗户AB的阳光挡住;如图3,该同学在冬季某日的正午时刻测得太阳光和水平线的夹角为30°,将遮阳篷收缩成CD′时,遮阳篷正好完全不挡进入窗户AB的阳光.
(1)计算图3中CD′的长度比图2中CD的长度收缩了多少米;(结果保留根号)
(2)如果图3中遮阳篷的长度为图2中CD的长度,请计算该遮阳篷落在窗户AB上的阴影长度为多少米?(请在图3中画图并标出相应字母,然后再计算)
【答案】(1)图3中CD′的长度比图2中CD的长度收缩了米;(2)该遮阳篷落在窗户AB上的阴影长度为米.
【解析】
(1)解直角△ACD,求出CD,再解直角△BCD′,求出CD′,然后计算CD﹣CD′的长度即可;
(2)图3中遮阳蓬的长度为图2中CD的长度时,过D作DE∥BD′,交AB于E,解直角△ECD,求出CE,再计算CE-BC即可.
(1)在直角△ACD中,∵AC=AB+BC=2米,∠CAD=30°,
∴tan∠CAD=,
∴CD=ACtan∠CAD=2×=(米).
在直角△BCD′中,∵BC=0.5米,∠CBD′=60°,
∴tan∠CBD′=,
∴CD′=BCtan∠CBD′=0.5×=(米),
∴CD﹣CD′=﹣=(米).
故图3中CD′的长度比图2中CD的长度收缩了米;
(2)如图,图3中遮阳篷的长度为图2中CD的长度时,过D作DE∥BD′,交AB于E.
在直角△ECD中,∵CD=米,∠CED=60°,
∴tan∠CED=,
∴CE===,
∴BE=CE﹣BC=﹣0.5=(米).
故该遮阳篷落在窗户AB上的阴影长度为米.