题目内容
【题目】如图,反比例函数y=(x>0)过点A(3,4),直线AC与x轴交于点C(6,0),过点C作x轴的垂线BC交反比例函数图象于点B.
(1)求k的值与B点的坐标;
(2)在平面内有点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,试写出符合条件的所有D点的坐标.
【答案】(1)k=12,B(6,2);(2)D1(3,2)或D2(3,6)或D3(9,-2).
【解析】(1)将A点的坐标代入反比例函数y=求得k的值,然后将x=6代入反比例函数解析式求得相应的y的值,即得点B的坐标;
(2)使得以A、B、C、D为顶点的四边形为平行四边形,如图所示,找出满足题意D的坐标即可.
(1)把点A(3,4)代入y=(x>0),得
k=xy=3×4=12,
故该反比例函数解析式为:y=.
∵点C(6,0),BC⊥x轴,
∴把x=6代入反比例函数y=,得
y==2.
则B(6,2).
综上所述,k的值是12,B点的坐标是(6,2).
(2)①如图,当四边形ABCD为平行四边形时,AD∥BC且AD=BC.
∵A(3,4)、B(6,2)、C(6,0),
∴点D的横坐标为3,yA-yD=yB-yC即4-yD=2-0,故yD=2.
所以D(3,2).
②如图,当四边形ACBD′为平行四边形时,AD′∥CB且AD′=CB.
∵A(3,4)、B(6,2)、C(6,0),
∴点D的横坐标为3,yD′-yA=yB-yC即yD-4=2-0,故yD′=6.
所以D′(3,6).
③如图,当四边形ACD″B为平行四边形时,AC=BD″且AC=BD″.
∵A(3,4)、B(6,2)、C(6,0),
∴xD″-xB=xC-xA即xD″-6=6-3,故xD″=9.
yD″-yB=yC-yA即yD″-2=0-4,故yD″=-2.
所以D″(9,-2).
综上所述,符合条件的点D的坐标是:(3,2)或(3,6)或(9,-2).