题目内容
【题目】综合与探究
如图,抛物线经过点、、,已知点,,且,点为抛物线上一点(异于).
(1)求抛物线和直线的表达式.
(2)若点是直线上方抛物线上的点,过点作,与交于点,垂足为.当时,求点的坐标.
(3)若点为轴上一动点,是否存在点,使得由,,,四点组成的四边形为平行四边形?若存在,直接写出点的坐标;若不存在,请说明理由.
【答案】(1),;(2)点的坐标为;(3)存在,点的坐标为或或
【解析】
(1),则OA=4OC=8,故点A(-8,0);△AOC∽△COB,则△ABC为直角三角形,则CO2=OAOB,解得:OB=2,故点B(2,0);即可求解;
(2)PE=EF,即;即可求解;
(3)分BC是边、BC是对角线两种情况,分别求解即可.
解:(1)∵,,
∴.
由点的坐标可知,故,,则点,点.
设抛物线的表达式为,
代入点的坐标,得,解得.
故抛物线的表达式为
设直线的表达式为,
代入点、的坐标,得,解得
故直线的表达式为.
(2)设点的坐标为,则点的坐标分别为,,.
∵,
∴,
解得或(舍去),则,
故当时,点的坐标为.
(3)设点P(m,n),n=,点M(s,0),而点B、C的坐标分别为:(2,0)、(0,4);
①当BC是边时,
点B向左平移2个单位向上平移4个单位得到C,
同样点P(M)向左平移2个单位向上平移4个单位得到M(P),
即m-2=s,n+4=0或m+2=s,n-4=0,
解得:m=-6或±-3,
故点P的坐标为:(-6,4)或(-3,-4)或(--3,-4);
②当BC是对角线时,
由中点公式得:2=m+s,n=4,
故点P(-6,4);
综上,点P的坐标为:(-6,4)或(-3,-4)或(--3,-4).
【题目】如图所示,某学校有一边长为20米的正方形区域(四周阴影是四个全等的矩形,记为区域甲;中心区是正方形,记为区域乙).区域甲建设成休闲区,区域乙建成展示区,已知甲、乙两个区域的建设费用如下表:
区域 | 甲 | 乙 |
价格(百元米2) | 6 | 5 |
设矩形的较短边的长为米,正方形区域建设总费用为百元.
(1)的长为 米(用含的代数式表示);
(2)求关于的函数解析式;
(3)当中心区的边长要求不低于8米且不超过12米时,预备建设资金220000元够用吗?请利用函数的增减性来说明理由.
【题目】某工厂计划生产,两种产品共10件,其生产成本和利润如下表.
种产品 | 种产品 | |
成本(万元件) | 2 | 5 |
利润(万元件) | 1 | 3 |
(1)若工厂计划获利14万元,问,两种产品应分别生产多少件?
(2)若工厂计划投入资金不多于44万元,且获利多于22万元,问工厂有哪几种生产方案?