题目内容
【题目】如图,在平行四边形ABCD中,AC与BD相交于点O,∠AOB=60°,BD=4,将△ABC沿直线AC翻折后,点B落在点E处,那么S△AED=______
【答案】
【解析】
根据题意画出翻折后的图形,连接OE、DE,先证明△OED是等边三角形,再利用同底等高的三角形面积相等,说明S△AED=S△OED,作OF⊥ED于F,求出△OED的面积即可得出结果.
解:如图,△AEC是△ABC沿AC翻折后的图形,连接OE、DE,
∵四边形ABCD是平行四边形,
∴OB=OD=BD=2,
∵△AEC是△ABC沿AC翻折后的图形,∠AOB=60,
∴∠AOE=60,OE=OB,
∴∠EOD=60,OE=OD,
∴△OED是等边三角形,
∴∠DEO=∠AOE=60,ED=OD=2,
∴ED∥AC,
∴S△AED=S△OED,
作OF⊥ED于F,DF=ED=1,
∴OF==,
∴S△OED=ED·DF=
∴S△AED=.
故答案为:.
练习册系列答案
相关题目