题目内容
【题目】如图,△ABC内接于⊙O,AB是直径,直线MN过点B,且∠MBC=∠BAC.半径OD⊥BC,垂足为H,AD交BC于点G,DE⊥AB于点E,交BC于点F.
(1)求证:MN是⊙O的切线;
(2)求证:DE= BC;
(3)若tan∠CAG= ,DG=4,求点F到直线AD的距离.
【答案】
(1)证明:∵AB是直径,
∴∠BCA=90°,
∴∠ABC+∠CAB=90°,
∵∠MBC=∠BAC,
∴∠MBC+∠ABC=90°,
∴∠ABM=90°,
即AB⊥MN,
∴MN是⊙O的切线.
(2)证明:∵OD⊥BC,
∴BH=CH,
在△ODE和△OBG中,
,
∴△ODE≌△OBG,
∴DE=BH= BC.
(3)解:作FJ⊥DG于J.
易证∠CAH=∠HDG=∠GFJ
∴tan∠GFJ= = ,设GJ=x,则FG=2x,FG= x,
∵∠EDA+∠EAD=90°,∠CHA+∠CAH=90°,∠EAD=∠ACH,
∴∠EDA=∠CHA=∠DHF,
∴DF=FG= x,
在Rt△DFJ中,∵DF2=DJ2+FJ2,
∴5x2=4x2+(4﹣x)2,
解得x=2,
∴FJ=4,
∴点F到直线AD的距离为4.
【解析】(1)要证明MN是⊙O的切线,只要证明AB⊥MN即可;(2)由△ODE≌△OBG,推出DE=BH,再根据垂径定理即可证明;(3)作FJ⊥DG于J,由tan∠GFJ=,设GJ=x,则FG=2x,FG=x,再证明DF=FG,在Rt△DFJ中,根据勾股定理列出方程解之即可.
【考点精析】通过灵活运用垂径定理和圆周角定理,掌握垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半即可以解答此题.
【题目】某公司欲招聘一名部门经理,对甲、乙、丙三名候选人进行了三项素质测试.各项测试成绩如表格所示:
测试项目 | 测试成绩 | ||
甲 | 乙 | 丙 | |
专业知识 | 74 | 87 | 90 |
语言能力 | 58 | 74 | 70 |
综合素质 | 87 | 43 | 50 |
(1)如果根据三次测试的平均成绩确定人选,那么谁将被录用?
(2)根据实际需要,公司将专业知识、语言能力和综合素质三项测试得分按4:3:1的比例确定每个人的测试总成绩,此时谁将被录用?
(3)请重新设计专业知识、语言能力和综合素质三项测试得分的比例来确定每个人的测试总成绩,使得乙被录用,若重新设计的比例为x:y:1,且x+y+1=10,则x= ,y= .(写出x与y的一组整数值即可).