题目内容
【题目】在平面直角坐标系中,抛物线 与轴交于点A,将点A向左平移3个单位长度,得到点B,点B在抛物线上.
(1)求点B的坐标(用含m的式子表示);
(2)求抛物线的对称轴;
(3)已知点P(-1,-m),Q(-3,1).若抛物线与线段PQ恰有一个公共点,结合函数图象,求m的取值范围.
【答案】(1)B(-3,-m);(2)x=;(3)-1≤m<0
【解析】
(1)根据抛物线与y轴交于点A,将点A向左平移3个单位长度,得到点B,可以先求得点A的坐标,再根据平移的性质得到点B的坐标;
(2)根据题目中的点A的坐标和(1)中求得的点B的坐标关于对称轴对称,可以求得该抛物线的对称轴;
(3)根据题意,可以画出相应的函数图象,然后利用分类讨论的方法即可得到m的取值范围.
解:(1)依题意得:A(0,-m)
∴B(-3,-m)
(2)∵点A,B关于抛物线的对称轴对称,
∴抛物线的对称轴为x=;
(3)当m>0时,点A(0,-m)在y轴负半轴,
此时,点P,Q位于抛物线内部(如图).
所以,抛物线与线段PQ无交点.
当m<0时,点A(0,-m)在y轴正半轴,
当AQ与x轴平行,即A(0,1)时(如图2),
抛物线与线段PQ恰有一个交点Q(-3,1).
此时,m=-1.
当m>-1时(如图3),结合图象,抛物线与线段PQ无交点.
当-1<m<0时(如图4),结合图象,抛物线与线段PQ恰有一个交点.
综上,m的取值范围是-1≤m<0
【题目】在星期一的第八节课,我校体育老师随机抽取了九年级的总分学生进行体育中考的模拟测试,并对成绩进行统计分析,绘制了频数分布表和统计图,按得分划分成A、B、C、D、E、F六个等级,并绘制成如下两幅不完整的统计图表.
等级 | 得分x(分) | 频数(人) |
A | 95<x≤100 | 4 |
B | 90<x≤95 | m |
C | 85<x≤90 | n |
D | 80<x≤85 | 24 |
E | 75<x≤80 | 8 |
F | 70<x≤75 | 4 |
请你根据图表中的信息完成下列问题:
1)本次抽样调查的样本容量是 .其中m= ,n= .
2)扇形统计图中,求E等级对应扇形的圆心角α的度数;
3)我校九年级共有700名学生,估计体育测试成绩在A、B两个等级的人数共有多少人?
4)我校决定从本次抽取的A等级学生(记为甲、乙、丙、丁)中,随机选择2名成为学校代表参加全市体能竞赛,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.