题目内容
【题目】在平面直角坐标系中,四边形是矩形,点,点,点.以点为中心,顺时针旋转矩形,得到矩形,点的对应点分别为,记旋转角为.
(1)如图①,当时,求点的坐标;
(2)如图②,当点落在的延长线上时,求点的坐标;
(3)当点落在线段上时,求点的坐标(直接写出结果即可).
【答案】(1)点的坐标为;(2)点的坐标为;(3)点的坐标为.
【解析】
(1) 过点作轴于根据已知条件可得出AD=6,再直角三角形ADG中可求出DG,AG的长,即可确定点D的坐标.
(2) 过点作轴于于可得出,根据勾股定理得出AE的长为10,再利用面积公式求出DH,从而求出OG,DG的长,得出答案
(3) 连接,作轴于G,由旋转性质得到,从而可证,继而可得出结论.
解:(1)过点作轴于,如图①所示:
点,点.
,
以点为中心,顺时针旋转矩形,得到矩形,
,
在中,,
,
点的坐标为;
(2)过点作轴于于,如图②所示:
则,
,
,
,
,
,,
点的坐标为;
(3)连接,作轴于G,如图③所示:
由旋转的性质得:,
,
,
,
,
,
在和中,,
,
,
,
点的坐标为.
练习册系列答案
相关题目