题目内容
【题目】如图,抛物线过,两点.
备用图1 备用图2
(1)求该抛物线的解析式;
(2)点是抛物线上一点,且位于第一象限,当的面积为6时,求点的坐标;
(3)在线段右侧的抛物线上是否存在一点,使得分的面积为两部分?存在,求出点的坐标;不存在,请说明理由.
【答案】(1)抛物线的表达式为:;(2)点的坐标为:或; (3)点的坐标为.
【解析】
(1)根据抛物线y=ax2+bx过A(5,0),B(1,4)两点,可以求得该抛物线的解析式;
(2) 过点作直线轴交点,设,则,分当点在上方时和当点在下方时,列方程求解即可;
(3) 设交于点,分当或时,由三角形相似,列方程求解即可.
(1)将点的坐标代入抛物线表达式,
得:,
解得:,
所以抛物线的表达式为:
(2)求得直线的表达式为:;
过点作直线轴交点,如图,
设,
则.
当点在上方时,
,
,
解得,
即
当点在下方时,
,
,
解得,(舍去),
即
综上,点的坐标为:或;
(3)由(2)得直线的表达式为:;
令,则,
即直线交轴于点.
设交于点,如图,
当或时,
则分的面积为
轴交点,
,
.
①当时,,
由(2)得:,
即,
解得,
即.
②当时,,
由(2)得:,
即,所得方程无解.
综上所述:点的坐标为.
练习册系列答案
相关题目
【题目】某水果公司购进10 000kg苹果,公司想知道苹果的损坏率,从所有苹果中随机抽取若干进行统计,部分结果如下表:
苹果总质量n(kg) | 100 | 200 | 300 | 400 | 500 | 1000 |
损坏苹果质量m(kg) | 10.50 | 19.42 | 30.63 | 39.24 | 49.54 | 101.10 |
苹果损坏的频率 (结果保留小数点后三位) | 0.105 | 0.097 | 0.102 | 0.098 | 0.099 | 0.101 |
估计这批苹果损坏的概率为_____(结果保留小数点后一位),损坏的苹果约有______kg.