题目内容
已知:二次函数的图象开口向上,并且经过原点.
(1)求的值;
(2)用配方法求出这个二次函数图象的顶点坐标.
(1)1;(2)(,-).
解析试题分析:(1)根据二次函数图象开口向上判断出a>0,再把原点坐标代入函数解析式求解即可;
(2)根据配方法的操作整理成顶点式解析式,然后写出顶点坐标即可.
试题解析:(1)∵图象开口向上,
∴a>0,
∵函数图象经过原点O(0,0),
∴a2-1=0,
解得a1=1,a2=-1(舍去),
∴a=1;
(2)y=x2-3x
=x2-3x+
=(x-)2-,
故抛物线顶点坐标为(,-).
考点: 1.二次函数的性质;2.二次函数的三种形式.
练习册系列答案
相关题目
某批发商以每件50元的价格购进400件T恤.若以单价70元销售,预计可售出200件.批发商的销售策略是:第一个月为增加销售量,降价销售,经过市场调查,单价每降低0.5元,可多售出5件,但最低单价不低于购进的价格;第一个月结束后,将剩余的T恤一次性清仓销售,清仓时单价为40元.设第一个月单价降低x元.
(1)根据题意,完成下表:
| 每件T恤的利润(元) | 销售量(件) |
第一个月 | | |
清仓时 | | |