题目内容

【题目】如图所示,正方形ABCD的边长为4 EF分别是BCDC边上一动点,EF同时从点C均以1 的速度分别向点B、点D运动,当点E与点B重合时,运动停止.设运动时间为(),运动过程中△AEF的面积为,请写出用表示的函数关系式,并写出自变量的取值范围.

【答案】y

【解析】

AEF的面积=正方形ABCD的面积-ABE的面积-ADF的面积-ECF的面积,分别表示正方形ABCD的面积、ABE的面积、ADF的面积、ECF的面积代入即可.

设运动时间为xs),

∵点EF同时从点C出发,以每秒21cm的速度分别向点BD运动,

CE=xCF=xBE=4-xDF=4-x

∴△AEF的面积=正方形ABCD的面积-ABE的面积-ADF的面积-ECF的面积,

即:y=16-ABBE-ADDF-ECFC

=16-44-x-44-x-xx

=.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网