题目内容
【题目】在平面直角坐标系中,已知(b、c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),点C的坐标为(4,3),直角顶点B在第四象限.
(1)如图,若抛物线经过A、B两点,求抛物线的解析式.
(2)平移1中的抛物线,使顶点P在直线AC上并沿AC方向滑动距离为时,试证明:平移后的抛物线与直线AC交于x轴上的同一点.
(3)在2的情况下,若沿AC方向任意滑动时,设抛物线与直线AC的另一交点为Q,取BC的中点N,试探究NP+BQ是否存在最小值?若存在,求出该最小值;若不存在,请说明理由.
【答案】
(1)
【解答】解:∵等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3)
∴点B的坐标为(4,﹣1).
∵抛物线过A(0,﹣1),B(4,﹣1)两点,
∴,
解得:b=2,c=﹣1,
∴抛物线的函数表达式为:.
(2)
如答题图2,设顶点P在直线AC上并沿AC方向滑动距离时,到达P′,作P′M∥y轴,PM∥x轴,交于M点,
∵点A的坐标为(0,﹣1),点C的坐标为(4,3),
∴直线AC的解析式为y=x﹣1,
∵直线的斜率为1,
∴△P′PM是等腰直角三角形,
∵PP′=,
∴P′M=PM=1,
∴抛物线向上平移1个单位,向右平移1个单位,
∵=,
∴平移后的抛物线的解析式为,
令y=0,则0=,
解得x1=1,x=52,
∴平移后的抛物线与x轴的交点为(1,0),(5,0),
解,得或
∴平移后的抛物线与AC的交点为(1,0),
∴平移后的抛物线与直线AC交于x轴上的同一点(1,0).
(3)
如答图3,取点B关于AC的对称点B′,易得点B′的坐标为(0,3),BQ=B′Q,取AB中点F,
连接QF,FN,QB′,易得FN∥PQ,且FN=PQ,
∴四边形PQFN为平行四边形.
∴NP=FQ.
∴NP+BQ=FQ+B′Q≥FB′==.
∴当B′、Q、F三点共线时,NP+BQ最小,最小值为.
【解析】(1)先求出点B的坐标,然后利用待定系数法求出抛物线的函数表达式;
(2)如答题图2,设顶点P在直线AC上并沿AC方向滑动距离时,到达P′,作P′M∥y轴,PM∥x轴,交于M点,根据直线AC的斜率求得△P′PM是等腰直角三角形,进而求得抛物线向上平移1个单位,向右平移1个单位,从而求得平移后的解析式,进而求得与x轴的交点,与直线AC的交点,即可证得结论;
(3)如答图3所示,作点B关于直线AC的对称点B′,由分析可知,当B′、Q、F(AB中点)三点共线时,NP+BQ最小,最小值为线段B′F的长度.
【题目】某校开展校园“美德少年”评选活动,共有“助人为乐”,“自强自立”、“孝老爱亲”,“诚实守信”四种类别,每位同学只能参评其中一类,评选后,把最终入选的20位校园“美德少年”分类统计,制作了如下统计表,后来发现,统计表中前两行的数据都是正确的,后两行的数据中有一个是错误的.
类别 | 频数 | 频率 |
助人为乐美德少年 | a | 0.20 |
自强自立美德少年 | 3 | b |
孝老爱亲美德少年 | 7 | 0.35 |
诚实守信美德少年 | 6 | 0.32 |
根据以上信息,解答下列问题:
(1)统计表中的a= ,b ;
(2)统计表后两行错误的数据是 ,该数据的正确值是 ;
(3)校园小记者决定从A,B,C三位“自强自立美德少年”中随机采访两位,用画树状图或列表的方法,求A,B都被采访到的概率