题目内容
【题目】如图,AB是⊙O的切线,B为切点,AC经过点O,与⊙O分别相交于点D,C.若∠ACB=30°,AB= ,则阴影部分的面积是( )
A.
B.
C.﹣
D.﹣
【答案】C
【解析】解:连接OB.
∵AB是⊙O切线,
∴OB⊥AB,
∵OC=OB,∠C=30°,
∴∠C=∠OBC=30°,
∴∠AOB=∠C+∠OBC=60°,
在RT△ABO中,∵∠ABO=90°,AB= ,∠A=30°,
∴OB=1,
∴S阴=S△ABO﹣S扇形OBD= ×1× ﹣ = ﹣ .
故选C.
【考点精析】本题主要考查了切线的性质定理和扇形面积计算公式的相关知识点,需要掌握切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径;在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2)才能正确解答此题.
练习册系列答案
相关题目