题目内容
【题目】“皮克定理”是用来计算顶点在整点的多边形面积的公式,公式表达式为,孔明只记得公式中的S表示多边形的面积,a和b中有一个表示多边形边上(含顶点)的整点个数,另一个表示多边形内部的整点个数,但不记得究竟是a还是b表示多边形内部的整点个数,请你选择一些特殊的多边形(如图1)进行验证,得到公式中表示多边形内部的整点个数的字母是 ,并运用这个公式求得图2中多边形的面积是 .
【答案】a,17.5.
【解析】
试题分析:如图1,∵三角形内由1个格点,边上有8个格点,面积为4,即4=1+﹣1;
矩形内由2个格点,边上有10个格点,面积为6,即6=2+﹣1;
∴公式中表示多边形内部整点个数的字母是a;
图2中,a=15,b=7,故S=15+﹣1=17.5.
故答案为:a,17.5.
【题目】农业部门引进一批新麦种,在播种前做了五次发芽试验,目的是想了解一粒这样的麦种发芽情况,实验统计数据如下:
实验的麦种数/粒 | 500 | 500 | 500 | 500 | 500 |
发芽的麦种数/粒 | 492 | 487 | 491 | 493 | 489 |
发芽率/% | 98.40 | 97.40 | 98.20 | 98.60 | 97.80 |
估计在与实验条件相同的情况下,种一粒这样的麦种发芽的概率约为
【题目】“节能环保,低碳生活”是我们倡导的一种生活方式,某家电商场计划用11.8万元购进节能型电视机、洗衣机和空调共40台,三种家电的进价和售价如表所示:
价格 | 进价 | 售价 |
电视机 | 5000 | 5500 |
洗衣机 | 2000 | 2160 |
空 调 | 2400 | 2700 |
(1)在不超出现有资金的前提下,若购进电视机的数量和洗衣机的数量相同,空调的数量不超过电视机的数量的3倍.请问商场有哪几种进货方案?
(2)在“2012年消费促进月”促销活动期间,商家针对这三种节能型产品推出“现金每购1000元送50元家电消费券一张、多买多送”的活动.在(1)的条件下,若三种电器在活动期间全部售出,商家预估最多送出多少张?