题目内容
【题目】如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=4,E、F分别为AB、BC上的点,沿直线EF将∠B折叠,使点B恰好落在AC上的D处,当△ADE恰好为直角三角形时,BE的长为_____.
【答案】或
【解析】
根据题意分情况讨论,当∠ADE=90°时或当∠AED=90°时,利用相似三角形的判定和性质列比例式,从而求解.
解:在Rt△ABC中,∵∠C=90°,AB=5,AC=4,
∴BC=3.
直线EF将∠B折叠,使点B恰好落在BC上的D处,当△ADE恰好为直角三角形时,
根据折叠的性质:BE=DE
设BE=x,则DE=x,AE=10﹣x
①当∠ADE=90°时,则DE∥BC,
则△AED∽△ABC
∴
∴
解得: ;
②当∠AED=90°时,∠A=∠A
则△AED∽△ACB
∴
∴解得:x=
故所求BE的长度为:或.
故答案为:或.
练习册系列答案
相关题目
【题目】为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(1≤x≤15,且x为整数)每件产品的成本是p元,p与x之间符合一次函数关系,部分数据如表:
天数(x) | 1 | 3 | 6 | 10 |
每件成本p(元) | 7.5 | 8.5 | 10 | 12 |
任务完成后,统计发现工人李师傅第x天生产的产品件数y(件)与x(天)满足如下关系:y=,
设李师傅第x天创造的产品利润为W元.
(1)直接写出p与x,W与x之间的函数关系式,并注明自变量x的取值范围:
(2)求李师傅第几天创造的利润最大?最大利润是多少元?
(3)任务完成后.统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?