题目内容

【题目】综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC,∠BOD的平分线OMON,然后提出如下问题:求出∠MON的度数.

特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OMON仍然是∠AOC和∠BOD的角平分线.其中,按图2方式摆放时,可以看成是ONODOB在同一直线上.按图3方式摆放时,∠AOC和∠BOD相等.

1)请你帮助“兴趣小组”进行计算:图2中∠MON的度数为   °.图3中∠MON的度数为   °.

发现感悟

解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:

小明:由于图1中∠AOC和∠BOD的和为90°,所以我们容易得到∠MOC和∠NOD的和,这样就能求出∠MON的度数.

小华:设∠BODx°,我们就能用含x的式子分别表示出∠NOD和∠MOC度数,这样也能求出∠MON的度数.

2)请你根据他们的谈话内容,求出图1中∠MON的度数.

类比拓展

受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC、∠BOD的平分线OMON,他们认为也能求出∠MON的度数.

3)你同意“智慧小组”的看法吗?若同意,求出∠MON的度数;若不同意,请说明理由.

【答案】1135135;(2)∠MON135°;(3)同意,∠MON=(90°﹣x°)+x°+(45°﹣x°)=135°.

【解析】

1)由题意可得,∠MON×90°+90°,∠MONAOC+BOD+∠COD,即可得出答案;

2)根据“OMON是∠AOC和∠BOD的角平分线”可求出∠MOC+∠NOD,又∠MON=(∠MOC+∠NOD)+∠COD,即可得出答案;

(3)设∠BOCx°,则∠AOC180°﹣x°,∠BOD90°﹣x°,进而求出∠MOC和∠BON,又∠MON=∠MOC+∠BOC+∠BON,即可得出答案.

解:(1)图2中∠MON×90°+90°=135°;图3中∠MONAOC+BOD+∠COD(∠AOC+∠BOD)+90°=90°+90°=135°;

故答案为:135135

2)∵∠COD90°,

∴∠AOC+∠BOD180°﹣∠COD90°,

OMON是∠AOC和∠BOD的角平分线,

∴∠MOC+∠NODAOC+BOD(∠AOC+∠BOD)=45°,

∴∠MON=(∠MOC+∠NOD)+∠COD45°+90°=135°;

3)同意,

设∠BOCx°,则∠AOC180°﹣x°,∠BOD90°﹣x°,

OMON是∠AOC和∠BOD的角平分线,

∴∠MOCAOC180°﹣x°)=90°﹣x°,

BONBOD90°﹣x°)=45°﹣x°,

∴∠MON=∠MOC+∠BOC+∠BON=(90°﹣x°)+x°+(45°﹣x°)=135°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网