题目内容
【题目】如图,已知一次函数的图象与反比例函数第一象限内的图象相交于点,与轴相交于点.
(1)求和的值;
(2)观察反比例函数的图象,当时,请直接写出的取值范围;
(3)如图,以为边作菱形,使点在轴正半轴上,点在第一象限,双曲线交于点,连接、,求.
【答案】(1)n=3,k=12;(2)或;(3)S△ABE=.
【解析】
(1)把A点坐标代入一次函数解析式可求得n,则可求得A点坐标,代入反比例函数解析式则可求得k的值;
(2)根据反比例函数的性质,可得答案;
(3)根据自变量与函数值的对应关系,可得B点坐标,根据两点间距离公式,可得AB,根据根据菱形的性质,可得BC的长,根据平行线间的距离相等,可得S△ABE=S△ABC.
解:(1)把点坐标代入一次函数解析式可得
,
∴,
∵点在反比例函数图象上,
∴;
(2)由图象,得
当时,,
当时,.
(3)过点作垂足为,连接
,
∵一次函数的图象与轴相交于点,
∴点的坐标为,
∴,
∵四边形是菱形,
∴,,
∴.
练习册系列答案
相关题目
【题目】一辆出租车从地出发,在一条东西走向的街道上往返,每次行驶的路程(记向东为正)记录如下表所示(,单位:)
第一次 | 第二次 | 第三次 | 第四次 |
(1)写出这辆出租车每次行驶的方向.
(2)求经过连续4次行驶后,这辆出租车所在的位置.
(3)这辆出租车一共行驶多少路程?