题目内容
【题目】在△ABC中,AB=AC,∠BAC=90°,点D为AC上一动点.
(1)如图1,点E、点F均是射线BD上的点并且满足AE=AF,∠EAF=90°.求证:△ABE≌△ACF;
(2)在(1)的条件下,求证:CF⊥BD;
(3)由(1)我们知道∠AFB=45°,如图2,当点D的位置发生变化时,过点C作CF⊥BD于F,连接AF.那么∠AFB的度数是否发生变化?请证明你的结论.
【答案】(1)详见解析;(2)详见解析;(3)∠AFB=45°不变化,理由详见解析.
【解析】
(1)易得∠BAE=∠CAF,由已知AB=AC、AE=AF,可得△ABE≌△ACF;
(2)由题意得∠ABE+∠BDA=90°,由(1)得∠ABE=∠ACF,又∠BDA=∠CDF,可得答案;
(3) ∠AFB=45°不变化,理由如下:过点A作AF的垂线交BM于点E,可证得△ABE≌△ACF,可得AE=AF,△AEF是等腰直角三角形,∠AFB=45°.
(1)∵∠BAC=∠BAE+∠EAD=90°,∠EAF=∠CAF+∠EAD=90°
∴∠BAE=∠CAF
在△ABE和△ACF中
∴△ABE≌△ACF(SAS)
(2)∵∠BAC=90°
∴∠ABE+∠BDA=90°,
由(1)得△ABE≌△ACF
∴∠ABE=∠ACF
∴∠BDA+∠ACF=90°
又∵∠BDA=∠CDF
∴∠CDF+∠ACF=90°
∴∠BFC=90°
∴CF⊥BD
(3)∠AFB=45°不变化,理由如下:
过点A作AF的垂线交BM于点E
∵CF⊥BD
∴∠BAC=90°
∴∠ABD+∠BDA=90°
同理∠ACF+∠CDF=90°
∵∠CDF=∠ADB
∴∠ABD=∠ACF
同(1)理得∠BAE=∠CAF
在△ABE和△ACF中
∴△ABE≌△ACF(ASA)
∴AE=AF
∴△AEF是等腰直角三角形
∴∠AFB=45°.
【题目】方法回顾:在进行数值估算时,我们常根据所求数值的条件确定它的大致范围,然后通过逐步缩小数值存在范围的方法,最终求得较为准确的数值.
如我们在探究面积为2的正方形的边长a的值时,有如下探究过程:
1<a<2 | 1<s<4 |
1.4<a<1.5 | 1.96<s<2.25 |
1.41<a<1.42 | 1.9881<s<2.0164 |
1.414<a<1.415 | 1.999396<s<2.002225 |
我们也可以借助数轴直观地看出“逐步缩小数值的存在范图”的过程,
这种方法在我们的解决向题的过程中经常会用到
问题提出:a是小于100的正整数,已知它的立方,不借助计算器,如何确定a呢?
问题探究:我们不妨由简单到复杂,从一位整数的立方开始硏究
步骤一、若13<a3<103,则1<a<10.即已知一个一位整数的立方为a3,怎样确定a?
易得:13=1,23=8,33=27,43=64,53=125,63=216,73=343:83=512,93=729,可以通过从1到9的九个整数的立方值确定这个数.观察这九个立方值我们还能发现,他们的个位数字各不相同.
步骤二、若103<a3<1003.则10<a<100,即已知一个两位数的立方为a3,怎样确定a?我们不妨举几个特例,以便寻找解决问题的方法.
特例1.如果一个两位整数a的立方是5832,怎样确定a?
因为103<5832<1003,所以10<a<100,a是一个两位数.
又因为103<5832<203,所以我们可以确定5832的十位数字是 ;再根据步骤一我们就能得出它的个位数是 ;从而确定这个两位数是 .
特例2.如果x是一个两位整数,且x3=614125,请你仿照上面的过程说明你确定这个两位整数的方法.
拓展应用:一颗近似球形的小行星的体积的为2624000πm3,请你根据以上方法求出这个小行星的半径.(球的体积公式v=πR3)