题目内容
【题目】如图,是一块含30°(即∠CAB=30°)角的三角板和一个量角器拼在一起,三角板斜边AB与量角器所在圆的直径MN恰好重合,其量角器最外缘的读数是从N点开始(即N点的读数为0°),现有射线CP绕点C从CA的位置开始按顺时针方向以每秒2度的速度旋转到CB位置,在旋转过程中,射线CP与量角器的半圆弧交于E.
(1)当旋转7.5秒时,连接BE,试说明:BE=CE;
(2)填空:①当射线CP经过△ABC的外心时,点E处的读数是 .
②当射线CP经过△ABC的内心时,点E处的读数是 ;
③设旋转x秒后,E点出的读数为y度,则y与x的函数式是y= .
【答案】(1)见解析;(2)①120°;②90°;③y=180﹣4x
【解析】
(1)由于是每次都旋转2°且CP的旋转决定着∠ACE和∠ABE,且二者都是从0°开始的,所以:∠ACE=∠ABE,只要证明:∠CBE=∠BCE即可证明BE=CE;
(2)①当射线CP经过△ABC的外心时,CP经过AB的中心且此时有:CO=AO,可以得出∠OCA=∠CAB=30°,即可求出点E处的度数;
②当射线CP经过△ABC的内心时,内心到三边的距离相等,即CP为∠ACB的角平分线,所以有∠ABE=∠ACE=45°,即可求出点E处的度数;
③由于每次旋转的度数一样,所以旋转x秒后,∠BCE的度数为90°﹣2x,从而得出∠BOE的度数,也即可得出y与x的函数式.
(1)证明:连接BE,如图所示:
∵射线CP绕点C从CA的位置开始按顺时针方向以每秒2度的速度旋转
∴当旋转7.5秒时,∠ACE=7.5×2°=∠ABE=15°
又∵∠CAB=30°,∠CBA=60°,∠ACB=90°
∴∠CBE=75°,∠BCE=90°﹣15°=75°,
即:∠CBE=∠BCE=75°
∴BE=CE.
(2)解:①当射线CP经过△ABC的外心时,CP经过AB的中点且此时有:CO=AO;
∴∠OCA=∠CAB=30°,∠AOE=60°
∴点E处的读数是120°.
②当射线CP经过△ABC的内心时,即CP为∠ACB的角平分线,
圆周角∠BCE==45°,圆心角为90°,
∴点E处的读数是90°.
③旋转x秒后,∠BCE的度数为90﹣2x,∠BOE的度数为180°﹣4x,
故可得y与x的函数式为:y=180°﹣4x.
【题目】如今很多初中生喜欢购头饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此某班数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A.白开水,B.瓶装矿泉水,C.碳酸饮料,D.非碳酸饮料.根据统计结果绘制如下两个统计图,根据统计图提供的信息,解答下列问题
(1)这个班级有多少名同学?并补全条形统计图;
(2)若该班同学每人每天只饮用一种饮品(每种仅限一瓶,价格如下表),则该班同学每天用于饮品的人均花费是多少元?
饮品名称 | 白开水 | 瓶装矿泉水 | 碳酸饮料 | 非碳酸饮料 |
平均价格(元/瓶) | 0 | 2 | 3 | 4 |
(3)为了养成良好的生活习惯,班主任决定在饮用白开水的5名班委干部(其中有两位班长记为A,B,其余三位记为C,D,E)中随机抽取2名班委干部作良好习惯监督员,请用列表法或画树状图的方法求出恰好抽到2名班长的概率.