题目内容
【题目】铁岭市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:
(1)求y与x之间的函数关系式;
(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?
(3)该干果每千克降价多少元时,商贸公司获利最大?最大利润是多少元?
【答案】(1)y=10x+100;(2)这种干果每千克应降价9元;(3)该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.
【解析】
(1)由待定系数法即可得到函数的解析式;
(2)根据销售量×每千克利润=总利润列出方程求解即可;
(3)根据销售量×每千克利润=总利润列出函数解析式求解即可.
(1)设y与x之间的函数关系式为:y=kx+b,
把(2,120)和(4,140)代入得,,
解得:,
∴y与x之间的函数关系式为:y=10x+100;
(2)根据题意得,(60﹣40﹣x)(10x+100)=2090,
解得:x=1或x=9,
∵为了让顾客得到更大的实惠,
∴x=9,
答:这种干果每千克应降价9元;
(3)该干果每千克降价x元,商贸公司获得利润是w元,
根据题意得,w=(60﹣40﹣x)(10x+100)=﹣10x2+100x+2000,
∴w=﹣10(x﹣5)2+2250,
∵a=-10,∴当x=5时,
故该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.
练习册系列答案
相关题目