题目内容
【题目】已知二次函数图象的顶点坐标为M(1,0),直线y=x+m与该二次函数的图象交于A,B两点,其中A点的坐标为(3,4),B点在y轴上.P(a,0)是x轴上的一个动点,过P作x轴的垂线分别与直线AB和二次函数的图象交于D、E两点.
(1)求m的值及这个二次函数的解析式;
(2)若点P的横坐标为2,求△ODE的面积;
(3)当0<a<3时,求线段DE的最大值;
(4)若直线AB与抛物线的对称轴交点为N,问是否存在一点P,使以M、N、D、E为顶点的四边形是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理由.
【答案】(1)m=1,y=x2﹣2x+1;(2)S△ODE=2;(3)DE的最大值为;(4)满足题意的点P是存在的,坐标为(2,0)或(,0)或(,0).
【解析】
(1)直线y=x+m 经过点A(3,4),4=3+m,m=1,二次函数图象的顶点坐标为M(1,0),即可求解;
(2)把x=2代入y=x2-2x+1 得y=1,E(2,1),把x=2代入y=x+1得y=3,D(2,3),即可求解;
(3)由题意得D(a,a+1),E(a,a2-2a+1),DE=(a+1)-(a2-2a+1)=-(a)2+,即可求解;
(4)分两种情况:D点在E点的上方、D点在E点的下方,分别求解即可.
解:(1)∵直线y=x+m 经过点A(3,4),
∴4=3+m,
∴m=1,
∵二次函数图象的顶点坐标为M(1,0),
∴设y=a(x﹣1)2
∵抛物线经过A(3,4),
∴a=1,
∴y=x2﹣2x+1;
(2)把x=2代入y=x2﹣2x+1 得y=1,
∴E(2,1),
把x=2代入y=x+1得y=3,
∴D(2,3),
∴DE=3﹣1=2
∴S△ODE=2;
(3)由题意得D(a,a+1),E(a,a2﹣2a+1),
∴DE=(a+1)﹣(a2﹣2a+1)=﹣(a)2+,
∴当a=(属于0<a<3 范围)时,DE的最大值为;
(4)∵直线AB:y=x+1,N(1,2),
∴MN=2,
∵要使四边形为平行四边形只要DE=MN.
∴分两种情况:
①D点在E点的上方,则
DE=(a+1)﹣(a2﹣2a+1)=﹣a2+3a,
∴﹣a2+3aspan>=2,
∴a=1(舍去)或a=2;
②D点在E点的下方,则 DE=a2﹣3a=2,
∴a=或;
综上所述,满足题意的点P是存在的,坐标为(2,0)或(,0)或(,0).