题目内容
【题目】如图,为等边的高,,点P为直线上的动点(不与点B重合),连接,将线段绕点P逆时针旋转60°,得到线段,连接、.
(1)问题发现:如图①,当点D在直线上时,线段与的数量关系为_________,_________;
(2)拓展探究:如图②,当点P在的延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;
(3)问题解决:当时,请直接写出线段的长度.
【答案】(1)相等;90°;(2)成立,证明见解析;(3)4或
【解析】
(1)连接AD,通过SAS证明,然后对应边、对应角相等、等量减等量,即可得出结论;
(2)连接AD,通过SAS证明,然后对应边、对应角相等、等量加等量,即可得出结论;
(3)通过前两问,我们知道是等边三角形,点D的轨迹是AP旋转60°得来的,A为定点,P再BC上运动是主动点,D为从动点,根据瓜豆原理可以得出D的轨迹是一条直线;BM长为定值、也为定值,利用定弦定角模型可知点D还应在圆弧上,因为点P可能在B点上方,还可能在C点下方,所以轨迹应为两段圆弧;通过以上分析可以作出图形,找到两种轨迹的交点,确定D点,求出AD即求出AP.
解:(1)相等;90°;
∵是等边三角形,
∴,
由旋转的性质可得:,,
∴是等边三角形,
∴,
∴
即
在与中,
∵,
∴,
∴,
∴
(2)成立,证明如下:
如图②,连接,
∵是等边三角形,
∴,
由旋转的性质可得:,,
∴是等边三角形,
∴,
∴,
,
∴,
在与中,
∵,
∴,
∴,.
∵,
∴
(3)点P在直线BC上运动,由瓜豆原理可知,D点也应在直线上运动,在BC上选取两个特殊的P点位置,按照题意作出对应D点,然后连接点D所在直线确定;因为所以BM所对圆心角为60°,按照圆心在BM左侧和右侧两种情况,作出点D所在两端圆弧,直线与两端圆弧交点,即满足题意的点D,具体图形如下:
AP1=AD1=4;
AP2=AD2=
综上所述,AP长为4或.
【题目】电器专营店的经营利润受地理位置、顾客消费能力等因素的影响,某品牌电脑专营店设有甲、乙两家分店,均销售A、B、C、D四种款式的电脑,每种款式电脑的利润如表1所示.现从甲、乙两店每月售出的电脑中各随机抽取所记录的50台电脑的款式,统计各种款式电脑的销售数量,如表2所示.
表1:四种款式电脑的利润
电脑款式 | A | B | C | D |
利润(元/台) | 160 | 200 | 240 | 320 |
表2:甲、乙两店电脑销售情况
电脑款式 | A | B | C | D |
甲店销售数量(台) | 20 | 15 | 10 | 5 |
乙店销售数量(台)8 | 8 | 10 | 14 | 18 |
试运用统计与概率知识,解决下列问题:
(1)从甲店每月售出的电脑中随机抽取一台,其利润不少于240元的概率为 ;
(2)经市场调查发现,甲、乙两店每月电脑的总销量相当.现由于资金限制,需对其中一家分店作出暂停营业的决定,若从每台电脑的平均利润的角度考虑,你认为应对哪家分店作出暂停营业的决定?并说明理由.