题目内容
【题目】如图,PA、PB切⊙O于A.B,点C在AB上,DE切⊙O于C,交PA、PB于D.E,已知PO=5cm,⊙O的半径为3cm,则△PDE的周长是______.
【答案】8
【解析】
连接OA、OB,由切线长定理可得:PA=PB,DA=DC,EC=EB;由勾股定理可得PA的长,△PDE的周长=PD+DC+CE+PE=PD+DA+PE+EB=PA+PB,即可求得△PDE的周长.
连接OA、OB,如下图所示:
∵PA、PB为圆的两条切线,
∴由切线长定理可得:PA=PB,
同理可知:DA=DC,EC=EB;
∵OA⊥PA,OA=3,PO=5,
∴由勾股定理得:PA=4,
∴PA=PB=4;
∵△PDE的周长=PD+DC+CE+PE,DA=DC,EC=EB;
∴△PDE的周长=PD+DA+PE+EB=PA+PB=8,
故此题应该填8cm.
练习册系列答案
相关题目