题目内容
【题目】如图,矩形纸片,,将其折叠使点与点重合,点的对应点为点,折痕为,那么和的长分别为( )
A.4和B.4和C.5和D.5和
【答案】D
【解析】
根据折叠将所求的问题转化到Rt△ABE中,由勾股定理建立方程可求,在求EF时,根据折叠和全等三角形可证OE=OF,再借助三角形相似,求得OE进而求出EF,得出答案.
解:如图,设BD与EF相交于点O,
由折叠得:ED=EB,DO=BO,EF⊥BD,
∵矩形ABCD,
∴AD=BC=9,CD=AB=3,∠A=90°,
设DE=x,则BE=x,AE=9x,
在Rt△ABE中,由勾股定理得:AE2+AB2=BE2,
即:(9x)2+32=x2,解得:x=5,即DE=5.
在Rt△ABD中,由勾股定理得:BD=,
∵∠DOE=∠BOF,∠EDO=∠FBO,DO=BO,
∴△DOE≌△BOF(AAS),
∴OE=OF,
∵△DOE∽△DAB,
∴,即,
解得:,
∴EF=2OE=,
故选:D.
练习册系列答案
相关题目
【题目】某学校八年级开展英语拼写大赛,一班和二班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示:
(1)根据图示填写下表
班级 | 中位数(分) | 众数(分) | 平均数(分) |
一班 | 85 | ||
二班 | 100 | 85 |
(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩比较好?
(3)已知一班的复赛成绩的方差是70,请求出二班复试成绩的方差,并说明哪个班成绩比较稳定?