题目内容
【题目】年初,一场突如其来的冠状肺炎肆虐全国,学生经历了“停课不停学”,疫情逐渐消退.某校在开学前夕,准备买一批酒精和消毒液对校园进行消毒,经调查,若购买箱酒精和箱消毒液共需元,购买箱酒精和箱消毒液共需元.
(1)求酒精和消毒液的单价;
(2)根据学校实际情况,需从该商店一次性购买酒精和消毒液共箱,总费用不超过元,那么最多可以购买多少箱消毒液?
(3)由于分阶段开学,九年级学生第一批开学,年级组长张老师准备用元购买一批酒精和消毒液进行先期消毒,在钱刚好用完的条件下,他有哪几种购买方案?
【答案】(1)每箱酒精50元,每箱84消毒液80元;(2)最多可以买33箱84消毒液;(3)共有2种购买方案,方案一:购买酒精12箱、84消毒液5箱;方案二:购买酒精4箱、84消毒液10箱
【解析】
(1)设每箱酒精x元,每箱84消毒液y元,根据“购买1箱酒精和2箱84消毒液共需210元,购买2箱酒精和5箱84消毒液共需500元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设购买84消毒液箱,则购买酒精()箱,根据“总价=单价×数量”结合购买酒精和84消毒液的总费用不超过4000元,即可得出关于的一元一次不等式,解之取其中的最大值整数值即可得出结论;
(3)设购买酒精箱,购买84消毒液箱,根据“总价=单价×数量”结合总价为1000元,即可得出关于,的二元一次方程,结合,均为非负整数,即可得出各购买方案.
(1)设每箱酒精x元,每箱84消毒液y元,
依题意,得:,
解得:.
答:每箱酒精50元,每箱84消毒液80元;
(2)设购买84消毒液箱,则购买酒精()箱,
依题意,得:+50()≤4000,
解得:.
∵为整数,
∴最大取33,
答:最多可以买33箱84消毒液;
(3)设购买酒精箱,购买84消毒液箱,
依题意,得:,
∴.
∵,均为非负整数,且都需购买,
∴5或10.
∴共有2种购买方案,方案一:购买酒精12箱、84消毒液5箱;方案二:购买酒精4箱、84消毒液10箱.