题目内容

【题目】如图,反比例函数y=的图象与一次函数y=x的图象交于点A、B,点B的横坐标是4.点P是第一象限内反比例函数图象上的动点,且在直线AB的上方.

(1)若点P的坐标是(1,4),直接写出k的值和PAB的面积;

(2)设直线PA、PBx轴分别交于点M、N,求证:PMN是等腰三角形;

(3)设点Q是反比例函数图象上位于P、B之间的动点(与点P、B不重合),连接AQ、BQ,比较∠PAQ与∠PBQ的大小,并说明理由.

【答案】(1)k=4,SPAB=15;(2)证明见解析;(3)PAQ=PBQ.

【解析】试题分析:(1)根据题意求出B点的坐标,然后利用待定系数法可求k的值;

(2)过点P作PH⊥x轴于H,然后根据反比例函数的解析式设出P点的坐标,然后可得方程组,求出PA、PB的解析式,然后得含m、n的点M、N的坐标,然后根据线段垂直平分线的性质可求证;

(3)同(2)方法,利用等边对等角和三角形的外角可证.

试题解析:(1)根据B点的横坐标求出B点的 (4,1),

(3) 同理可证,QC=QD,

利用等边对等角和三角形的外角可证。如图。

练习册系列答案
相关题目

【题目】食品安全受到全社会的广泛关注,济南市某中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两份尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题.

1)接受问卷调查的学生共有_____人,扇形统计图中基本了解部分所对应扇形的圆心角为_____.

2)请补全条形统计图.

3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对食品安全知识达到了解基本了解程度的总人数.

4)若从对食品安全知识达到了解程度的2个女生和2个男生中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.

【答案】16090°;(2)补图见解析;(3300;(4

【解析】分析:(1)根据了解很少的人数除以了解很少的人数所占的百分百求出抽查的总人数,再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所对应扇形的圆心角的度数;(2)用调查的总人数减去“基本了解”“了解很少”和“基本了解”的人数,求出了解的人数,从而补全统计图;(3)用总人数乘以了解基本了解程度的人数所占的比例,即可求出达到“了解”和“基本了解”程度的总人数(4)根据题意列出表格,再根据概率公式即可得出答案.

详解:(16090°.

2)补全的条形统计图如图所示.

3)对食品安全知识达到了解基本了解的学生所占比例为,由样本估计总体,该中学学生中对食品安全知识达到了解基本了解程度的总人数为.

4)列表法如表所示,

男生女生

男生

男生

女生

女生

男生

男生男生

男生女生

男生女生

男生

男生男生

男生女生

男生女生

女生

男生女生

男生女生

女生女生

女生

男生女生

女生女生

所有等可能的情况一共12种,其中选中1个男生和1个女生的情况有8种,所以恰好选中1个男生和1个女生的概率是.

点睛:本题考查了条形统计图、扇形统计图以及用列表法或树状图法求概率,根据题意求出总人数是解题的关键;注意运用概率公式:概率=所求情况数与总情况数之比.

型】解答
束】
24

【题目】为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2015年图书借阅总量是7500本,2017年图书借阅总量是10800.

1)求该社区的图书借阅总量从2015年至2017年的年平均增长率.

2)已知2017年该社区居民借阅图书人数有1350人,预计2018年达到1440人,如果2017年至2018年图书借阅总量的增长率不低于2015年至2017年的年平均增长率,设2018年的人均借阅量比2017年增长a%,求a的值至少是多少?

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网