题目内容
【题目】如图,△ABC中∠A=30°,E是AC边上的点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC于点D,又将△BCD沿着BD翻折,C点恰好落在BE上,此时∠CDB=82°,则原三角形的∠B为( )
A.75°
B.76°
C.77°
D.78°
【答案】D
【解析】解:在△ABC中,∠A=30°,则∠B+∠C=150°…①; 根据折叠的性质知:∠B=3∠CBD,∠BCD=∠C;
在△CBD中,则有:∠CBD+∠BCD=180°﹣82°,即: ∠B+∠C=98°…②;
①﹣②,得: ∠B=52°,
解得∠B=78°.
故选D.
【考点精析】关于本题考查的翻折变换(折叠问题),需要了解折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等才能得出正确答案.
练习册系列答案
相关题目