题目内容

【题目】如图,在△ABC中,∠ABC、∠ACB的平分线相交于F,过F作DE∥BC,交AB于D,交AC于E,那么下列结论:①△BDF、△CEF都是等腰三角形;②DE=DB+CE;③AD+DE+AE=AB+AC;④BF=CF.正确的有

【答案】①②③
【解析】解:①∵BF是∠ABC的角平分线, ∴∠ABF=∠CBF,
又∵DE∥BC,
∴∠CBF=∠DFB,
∴DB=DF即△BDF是等腰三角形,
同理∠ECF=∠EFC,
∴EF=EC,
∴△BDF,△CEF都是等腰三角形;
∵∠B、∠C的角平分线交于点F,
∴∠DBF=∠CBF(设为α),∠ECF=∠BCF(设为β);
∵DE∥BC,
∴∠DFB=∠CBF=α,∠EFC=∠BCF=β;
∴∠DBF=∠DFB,∠EFC=∠ECF,
∴DB=DF,EF=EC;
∴DE=DB+CE,AD+DE+AE=AB+AC,②③正确;
AB和AC不一定相等,∴BF和CF不一定相等.故④错误
所以答案是:①②③
【考点精析】解答此题的关键在于理解平行线的性质的相关知识,掌握两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网